Blog Archives

Foodie Friday: Nutritional e’Pap Recipes


Yesterday we gave you some important information about e’Pap, a revolutionary nutrient-loaded porridge that was created to cater to the feeding needs of HIV patients and babies.

Nutrient content in fruit and vegetables has dropped up to 76% over the past 50 years in the USA and Europe. Proof that modern intensive agriculture practices create the problem. The result is a global crisis of mass starvation of micro-nutrients in communities both rich and poor.

Such is the success of e’Pap in improving nutrition, energy and productivity for those who consume it, that up to two million servings a month of e’Pap are distributed in Africa.

e’Pap could be the answer for Children with Cancer – it is full of vitamins, cheap, and easy-to-make; it does not even require cooking so is suitable for use in even the remotest rural areas.

Read the rest of this entry

Herbal Essential Oils Proven to Kill Cancer Cells


Aromatherapy and the use of essential oils has become an accepted complementary therapy for cancer patients, as they can provide support in the form of stress relief and emotional support.

Some essential oils, however, have been shown to act directly on cancer cells, , preventing growth or even promoting apoptosis (cancer cell death).

Every individual carries a minute amount of “cancer,” or malformed cells, in our bodies at all times. These cells do not cause any problems in healthy bodies where a balanced diet and robust lifestyle is practiced – the cells will generally be removed or healed and the body kept in balance.

In an unhealthy body which is not well-maintained or exercised and fed a constant diet of junk food, these malformed cells can continue to exist and can actually develop into cancer.

Some of the most effective oils against unhealthy irregular cells include Chamomile, Frankincense, Oregano, Rosemary and Thyme. These oils are remarkable because they are able to selectively harm or disable cancer cells while leaving healthy cells intact, whereas many conventional cancer medications and treatments are often poorly targeted and cause severe side effects.

Read the rest of this entry

High Levels of Education Linked to Heightened Brain Tumour Risk


A university degree is linked to a heightened risk of developing a brain tumor, suggests a large observational study, published online in the Journal of Epidemiology & Community Health.

Gliomas, in particular, were more common among people who had studied at university for at least three years than they were among those who didn’t go on to higher education, the data show.

The researchers base their findings on more than 4.3 million Swedes, all of whom were born between 1911 and 1961 and living in Sweden in 1991.

They were monitored between 1993 and 2010 to see if they developed a primary brain tumor, and information on educational attainment, disposable income, marital status, and occupation was obtained from national insurance, labour market,and national census data.

During the monitoring period, 1.1 million people died and more than 48,000 emigrated, but 5735 of the men and 7101 of the women developed a brain tumour. Read the rest of this entry

Cancer Protects Itself via Inflammatory Pathways


A few years ago, scientists in the laboratory of Stanford’s Irving Weissman, MD, discovered that cancer cells cover themselves in copies of the CD47 “don’t eat me” protein to protect themselves from being engulfed and devoured by immune cells called macrophages.

What they could never really tell though, is how the cancer cells actually increased the production of CD47.

Recently, however, Weissman and his colleagues discovered that cancer cells accomplish this trick by recruiting molecular pathways usually used for inflammatory processes. One particular pathway involves a protein called tumour necrosis factor (TNF-alpha), which is produced in response to infection or trauma. It attracts and activates macrophage cells, which destroy sick or damaged cells. Ironically, that same genetic machinery is being used by cancer cells to protect themselves from those macrophages. The research study was published in the journal Nature Communications. Read the rest of this entry

High Dose Vitamin C to Improve Cancer Treatment Outcomes Passes Human Safety Trial


Many individuals have been espousing the use of high doses of Vitamin C for cancer patients for years, but were shouted down by the majority, especially Big Pharma, because Vitamin C is not a massive money-spinner.

Now, however, new clinical trials have found that it is safe to regularly infuse brain and lung cancer patients with 800 – 1,000 times the daily recommended amount of vitamin C as a potential strategy to improve outcomes of standard cancer treatments.

In a work presented March 30, 2017 in Cancer Cell, University of Iowa researchers have also shown pathways by which altered iron metabolism in cancer cells, and not normal cells, lead to increased sensitivity to cancer cell killing caused by high dose vitamin C.

This paper reveals a metabolic frailty in cancer cells that is based on their own production of oxidizing agents that allows us to utilize existing redox active compounds, like vitamin C, to sensitize cancer cells to radiation and chemotherapy,” says co-author Garry Buettner, who was one of the first to propose that cancer cells might have a vulnerability to redox active compounds over 40 years ago. Buettner, along with study senior authors Bryan Allen and Douglas Spitz, are faculty members at the University of Iowa’s Department of Radiation Oncology, Free Radical and Radiation Biology Program, in the Holden Comprehensive Cancer Center. Read the rest of this entry

Link between Blood Sugar & Brain Cancer Found


According to a new study from The Ohio State University, while many cancers are more common among those with diabetes, cancerous brain tumours called gliomas are less common among those with elevated blood sugar and diabetes.

Glioma is one of the most common types of cancerous tumours originating in the brain. It begins in the cells that surround nerve cells and help them function.

The discovery builds on previous Ohio State research showing that high blood sugar appears to reduce a person’s risk of a noncancerous brain tumour called meningioma. Both studies were led by Judith Schwartzbaum, an associate professor of epidemiology and a researcher in Ohio State’s Comprehensive Cancer Center. The new glioma study appears in the journal Scientific Reports. Read the rest of this entry

Reduction in Radiotherapy for Childhood Brain Tumours Unsucessful


A research study, Radiotherapy after high-dose chemotherapy with autologous hematopoietic cell rescue: Quality assessment of Head Start III, published in Paediatric Blood & Cancer, shows that reduced Radiation Therapy results in worse outcomes.

This study shows that attention to the timing, dose, and location of radiation therapy is crucial,” Kenneth K. Wong, MD, a radiation oncologist at Children’s Hospital Los Angeles and first author on the study.

The paper is a qualitative assessment of the Head Start III trial which avoids or delays Radiation Therapy in children with brain tumours. The studies represent an innovative approach to the treatment of malignant brain tumours – using high dose Chemotherapy followed by transfusion of blood stem cells – as a substitute for radiation in younger children, where the late side effects of radiation to the developing brain can be particularly detrimental. If disease persists after this course of treatment or if the child is older, they receive radiation therapy.

In the latest Head Start III study, only 31 of 220 children received radiation – of those, a subset (8 of 25), consisting of  children 6 years of age or younger, had deviations from the treatment plan.

Parents or providers may want to delay the start of radiation or reduce the dose or area of exposure – particularly in very young children,” said Wong. “But in a study already limiting radiation exposure – patients with these kinds of protocol violations experienced worse outcomes.”

Patients that received radiation therapy treatment according to protocol and within 11 weeks of recovery from stem cell transfusion showed improved overall survival.

 

Cancer-Detecting Gum May Soon Be Available: Fact or Fiction?


On April 10, 2017, Fox News published an article, Chew on this: Cancer-Detecting Gum May Soon Be Available, which stated that “soon there may be a new chewing gum that could help save your life.”

The article went on to say:

The gum absorbs what are known as “volatiles” in a person’s saliva as they chew it, then the chewed gum is analyzed to determine whether it contains certain chemicals produced in the body when a person has cancer.

Katherine Bazemore, president and CEO of Volatile Analysis explained that there are chemicals produced in the body called volatile organic compounds, and they are unique to each type of cancer. By determining which of those compounds are found in the gum, doctors can tell which type of cancer is present in the patient.

The gum is still in the testing stage so it may be too early to determine how well it will work. But the company is hoping to make the gum available to doctors and patients sometime next year.

While you may not be able to blow bubbles with it, Bazemore promises the gum will come in flavors that taste just like candy.

Now this sounds FANTASTIC, but is it the truth?

Read the rest of this entry

Do Childhood Cancer Survivors have a Genetic Risk for Future Cancers?


According to the first large-scale whole-genome sequencing study on Childhood Cancer Survivors, approximately 12% of them have genetic mutations that put them or their children at risk for future cancers.

Previous studies include Second Primary Cancers in Survivors of Childhood Cancer, published in The Lancet in 2009, a registry-based report about a Nordic cohort of 47 697 childhood cancer survivors reported that “The overall risk of second primary cancers was 2·3-fold greater than that in the general population. In two large cohorts of 14 581 individuals who had survived for 5 years or more (USA, Childhood Cancer Survivor Study) and 16 541 who had survived for 3 years or more (UK, population-based study), the risk was reported to be 6·4-fold2 and 5·8-fold3 greater, respectively, than that in the general population.”

The findings from St. Jude Children’s Research Hospital’s latest whole genome sequencing of cancer survivors study was recently presented at the American Association for Cancer Research (AACR) 2017 Annual Meeting, and highlights the previously under-appreciated role that genetics plays in second neoplasms (SNs).

Read the rest of this entry

Caution Called for in Development of Drugs for Most Common Malignant Paediatric Brain Tumour


Researchers led by St. Jude Children’s Research Hospital scientists have worked out how a crucial cancer-related protein, a “histone writer” called Ezh2, plays a role in suppressing as well as driving the most aggressive form of the brain tumour medulloblastoma.

Ezh2 is a histone writer, an enzyme that can tag or label other proteins in a way that turns off genes. The new findings, which appear online in Cell Reports, show that unlike in some earlier studies where the protein helped to advance disease, Ezh2 can also suppress cancer. This dichotomy has implications for the potential use of drugs intended to inhibit this enzyme, some of which are being tested in clinical trials.

The enzyme looked at in this study is the histone H3K27 mono-, di- and trimethylase of polycomb repressive complex 2, or Ezh2 for short. This histone writer adds methyl groups to specific histone proteins leading to epigenetic modifications that affect gene expression. The team used CRISPR gene editing to knock out the activity of the protein in a mouse model. Loss of function of this protein due to gene editing resulted in acceleration of the development of medulloblastoma tumours.

Read the rest of this entry

Reservoir of Chemotherapy-Resistant Stem Cells in the Intestine


The intestine has a high rate of cellular regeneration due to the wear and tear originated by its function degrading and absorbing nutrients and eliminating waste. The entire cell wall is renewed once a week approximately. This explains why the intestine holds a large number of stem cells in constant division, thereby producing new cell populations of the various types present in this organ.

Researchers at the Institute for Research in Biomedicine (IRB Barcelona) headed by ICREA investigator Eduard Batlle, head of the Colorectal Cancer Laboratory, have discovered a new group of intestinal stem cells with very different characteristics to those of the abundant and active stem cells already known in this organ. Performed in collaboration with the Centro Nacional de Análisis Genómico (CNAG-CRG), the study has been published in Cell Stem Cell. These new group of stem cells are quiescent, that is to say, they do not proliferate and are apparently dormant.

The researchers describe them as a reservoir of stem cells – it is estimated that there is one quiescent cell for every 10 active intestinal stem cells. In healthy conditions, these cells have no apparent relevant function. However, they are important in situations of stress, , for example, after chemotherapy, in inflammatory processes, and in tissue infections – all conditions in which the population of “normal/active” stem cells is depleted. These quiescent cells would serve to regenerate the organ by giving rise to the various types of cells present in the intestine, renewing the population of “normal/active” stem cells, and restoring balance to the tissue.

Read the rest of this entry

Early Deaths from Childhood Cancer Up to 4 X More Common Than Previously Reported


Treatments for childhood cancers have improved to the point that 5-year survival rates are over 80 %.

However, one group has failed to benefit from these improvements, namely children who die so soon after diagnosis that they are not able to receive treatment, or who receive treatment so late in the course of their disease that it is destined to fail.

A study published in the Journal of Clinical Oncology explores this challenging population, finding that death within a month of diagnosis is more likely in very young children and those from minority racial and ethnic groups even independent of low socioeconomic status.

The study uses a large national database to find that the rate of deaths within one month of diagnosis has been previously under-reported in clinical trial data, with early deaths from some paediatric cancer subtypes up to four times as common as had been implied by clinical trial reports.

Read the rest of this entry

Gene Therapy: Does it Work?


While Gene Therapy has been around for a few years already, we don’t seem to be hearing much about it being used to treat cancer, especially paediatric cancer, and one cannot help but wonder why…

In most gene therapy studies, a “normal” gene is inserted into the genome to replace an “abnormal,” disease-causing gene. In cancer, some cells become diseased because certain genes have been permanently turned off. Using gene therapy, mutated genes that cause disease could be turned off so that they no longer promote disease, or healthy genes that help prevent disease could be turned on so that they can inhibit the disease.

Other cells may be missing certain genes. Researchers hope that replacing missing or defective genes can help treat certain diseases. For example, a common tumor suppressor gene called p53 normally prevents tumor growth in your body. Several types of cancer have been linked to a missing or inactive p53 gene. If doctors could replace p53 where it’s missing, that might trigger the cancer cells to die.

Read the rest of this entry

What Happened to the EBC-46 Miracle Cancer Drug?


Back in 2014, researchers published the results of a study in the journal PLoS One that showed the complete destruction of tumours, without relapse, in 75% of laboratory mice treated with direct injections of EBC-46 into the cancerous cells. In some cases, this destruction occurred in as little as 48 hours.

Dr. Glen Boyle was the lead author of that study, conducted by a team of cancer scientists at the Queensland Institute of Medical Research, Australia as well as the private pharmaceutical company QBiotics.  The team extracted a compound from seeds contained in the berry of the Blushwood tree (Fontainea picrosperma), which only grows in the Atherton Tablelands, an area of Rainforest in the North of Queensland.

At the time, Boyle stated that “in most cases a single injection starts killing the cancer off in 4-5 hours.” He also said “the compound works in three ways – it kills the tumour, cuts off the blood supply and activates the immune system to clear it all up.”

In extremely broad brushstrokes, researchers posit that the compound achieves these goals primarily by activating an enzyme called Protein Kinase C, though the exact mechanisms remain unclear.

In December 2016 an article entitled “Scientists find Australian berry to cure cancer in 48 hours!” started doing the rounds and is still being widely shared, but is this 100% true??

Read the rest of this entry

%d bloggers like this: